skip to main content


Search for: All records

Creators/Authors contains: "Morrow, Jordan A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Semi-arid regions faced with increasingly scarce freshwater resources must manage competing demands in the food-energy-water nexus. A possible solution modifies soil hydrologic properties using biosurfactants to reduce evaporation and improve water retention. In this study, two different soil textures representative of agricultural soils in Kansas were treated with a direct application of the biosurfactant, Surfactin, and an indirect application via inoculation of Bacillus subtilis . Evaporation rates of the wetted soils were measured when exposed to artificial sunlight (1000 W/m 2 ) and compared to non-treated control soils. Experimental results indicate that both treatments alter soil moisture dynamics by increasing evaporation rates by when soil moisture is plentiful (i.e., constant rate period) and decreasing evaporation rates by when moisture is scarce (i.e., slower rate period). Furthermore, both treatments significantly reduced the soil moisture content at which the soil transitioned from constant rate to slower rate evaporation. Out of the two treatments, inoculation with B. subtilis generally produced greater changes in evaporation dynamics; for example, the treatment with B. subtilis in sandy loam soils increased constant rate periods of evaporation by 43% and decreased slower rate evaporation by 49%. In comparing the two soil textures, the sandy loam soil exhibited a larger treatment effect than the loam soil. To evaluate the potential significance of the treatment effects, a System Dynamics Model operationalized the evaporation rate results and simulated soil moisture dynamics under typical daily precipitation conditions. The results from this model indicate both treatment methods significantly altered soil moisture dynamics in the sandy loam soils and increased the probability of the soil exhibiting constant rate evaporation relative to the control soils. Overall, these findings suggest that the decrease in soil moisture threshold observed in the experimental setting could increase soil moisture availability by prolonging the constant rate stage of evaporation. As inoculation with B. subtilis in the sandy loam soil had the most pronounced effects in both the experimental and simulated contexts, future work should focus on testing this treatment in field trials with similar soil textures. 
    more » « less
  2. Abstract Laser powder bed fusion (LPBF) was utilized to create a series of aluminum alloy (i.e., AlSi10Mg) 5 mm-diameter support pillars with a fixed height of 5 mm containing varying filet angles and build orientations (i.e., 0 deg, 10 deg, 20 deg, 30 deg, 40 deg, 50 deg, and 60 deg from the normal surface) to determine surface roughness and water wettability effects. From experiments, anisotropic wetting was observed due in part to the surface heterogeneity created by the LPBF process. The powder-sourced AlSi10Mg alloy, typically hydrophobic, exhibited primarily hydrophilic behavior for build angles of 0 deg and 60 deg, a mix of hydrophobic and hydrophilic behavior at build angles of 10 deg and 20 deg, and hydrophobic behavior at 30 deg, 40 deg, and 50 deg build angles. Measured surface roughness, Ra, ranged from 5 to 36 µm and varied based on location. 3D-topography maps were generated, and arithmetic mean heights, Sa, of 15.52–21.71 µm were observed; the anisotropy of roughness altered the wetting behavior, thereby prompting some hydrophilic behavior. Build angles of 30 deg and 40 deg provided for the smoothest surfaces. A significantly rougher surface was found for the 50 deg build angle. This abnormally high roughness is attributed to the melt pool contact angle having maximal capillarity with the surrounding powder bed. In this study, the critical melt pool contact angle was near equal to the build angle, suggesting that a critical build angle exists, which gives rise to pronounced melt pool wetting behavior and increased surface roughness due to enhanced wicking followed by solidification. 
    more » « less
  3. Abstract Engineering innovations—including those in heat and mass transfer—are needed to provide food, water, and power to a growing population (i.e., projected to be 9.8 × 109 by 2050) with limited resources. The interweaving of these resources is embodied in the food, energy, and water (FEW) nexus. This review paper focuses on heat and mass transfer applications which involve at least two aspects of the FEW nexus. Energy and water topics include energy extraction of natural gas hydrates and shale gas; power production (e.g., nuclear and solar); power plant cooling (e.g., wet, dry, and hybrid cooling); water desalination and purification; and building energy/water use, including heating, ventilation, air conditioning, and refrigeration technology. Subsequently, this review considers agricultural thermal fluids applications, such as the food and water nexus (e.g., evapotranspiration and evaporation) and the FEW nexus (e.g., greenhouses and food storage, including granaries and freezing/drying). As part of this review, over 100 review papers on thermal and fluid topics relevant to the FEW nexus were tabulated and over 350 research journal articles were discussed. Each section discusses previous research and highlights future opportunities regarding heat and mass transfer research. Several cross-cutting themes emerged from the literature and represent future directions for thermal fluids research: the need for fundamental, thermal fluids knowledge; scaling up from the laboratory to large-scale, integrated systems; increasing economic viability; and increasing efficiency when utilizing resources, especially using waste products. 
    more » « less